Относится ли кислород к горючим газам. Характеристика взрывоопасных и вредных газов

  • Дата: 08.04.2024

Основными горючими газами, применяемыми при резке, являются ацетилен, природный газ, пропан-бутан, пары жидких горючих (керосина), которые, сгорая в кислороде, дают достаточную для резки температуру. В судостроении наиболее широко применяется кислородно-ацетиленовая резка. Рассмотрим основные свойства кислорода и ацетилена.

Кислород - химический элемент, при нормальных условиях представляющий собой бесцветный газ без запаха и вкуса. Сжатый кислород при соприкосновении с маслом и жирами мгновенно их окисляет с выделением большого количества тепла, что может привести к быстрому воспламенению масла или к взрыву. Особенно активно соединяются с кислородом металлы, поэтому он и применяется при резке.


Рис. 7.1. Кислородный баллон. 1 - днище; 2 - цилиндрический корпус; 3 - горловина; 4 - кольцо; 5 - предохранительный колпак; 6 - вентиль; 7 - опорный башмак.

Кислород поступает к месту потребления по трубопроводу или в баллонах. Баллон (рис. 7.1) представляет собой цилиндрический корпус, имеющий внизу выпуклое днище, а сверху - сферическую часть с горловиной. Горловина имеет коническое отверстие с резьбой, в которое ввертывается вентиль. Для устойчивости баллона на нижнюю часть его корпуса насажен опорный башмак. Максимальное давление кислорода в баллоне равно 14,7 МПа, Расходовать кислород из баллона можно до давления 0,29 МПа. Кислородные баллоны окрашивают в голубой цвет. Поперек баллона черной краской делают надпись «Кислород». Верхнюю сферическую часть баллона не окрашивают, а выбивают на ней паспортные данные баллона. Наполненный кислородом баллон имеет массу около 70 кг.

Ацетилен - химическое соединение углерода с водородом. Химически чистый ацетилен является бесцветным газом со слабым эфирным запахом. Технический ацетилен, применяемый для газовой резки, из-за примесей (сероводорода, аммиака и др.) имеет резкий неприятный запах. С кислородом и воздухом ацетилен образует взрывоопасные смеси, которые взрываются от огня или искры.

Ацетилен получают при взаимодействии карбида кальция с водой в специальных аппаратах, называемых ацетиленовыми генераторами.

К газорезательным постам ацетилен подается по трубопроводам или в баллонах.

При давлении более 0,19 МПа газообразный ацетилен в больших объемах становится взрывоопасным. Помещенный же в очень узкие (капиллярные) каналы, он не взрывается даже при давлении 2,45 МПа. Поэтому ацетиленовые баллоны заполняют специальной высокопористой массой (древесным активированным углем, пемзой, инфузорной землей).

Ацетилен растворяется в некоторых жидкостях, особенно в ацетоне. Учитывая это свойство, баллоны на 30-40 % по объему заполняют ацетоном. При открытом вентиле баллона ацетилен выделяется из ацетона в виде газа, а ацетон остается в баллоне.

Баллоны накачивают ацетиленом до давления 1,47- 1,86 МПа. Расходовать ацетилен из баллонов можно до давления в баллоне 0,1 МПа. При меньшем давлении происходит значительный унос паров ацетона с ацетиленом.

Ацетиленовые баллоны отличаются от кислородных по устройству вентиля и окраске. Их окрашивают в белый цвет и надписывают красной краской «Ацетилен». Масса наполненного ацетиленом баллона около 80 кг.

Пропан-бутановая смесь получается при добыче и переработке природных нефтяных газов, а также при переработке нефти. Пропан-бутан в сжиженном состоянии хранится в баллонах.

Целесообразность применения пропан-бутана в качестве заменителя ацетилена обусловливается главным образом дороговизной и дефицитностью ацетилена, однако при резке на пропан-бутане возрастает расход кислорода от 40 до 70 % в зависимости от толщины разрезаемого материала, а скорость резки снижается от 15 до 30%. Применение пропан-бутана, как и других заменителей ацетилена, допускается только по специальному разрешению администрации и по согласованию с санитарной и пожарной инспекциями.

Природный газ состоит в основном из метана (до 99 %) с небольшими примесями других газов. При нормальных температуре и давлении метан представляет собой газ без запаха и цвета, поэтому для обнаружения его утечки добавляют одорант, придающий ему резкий запах. Целесообразность использования природного газа для кислородной резки обусловлена возможностью бесперебойного централизованного снабжения им предприятий по газопроводу без существенных затрат на транспортировку; значительным снижением стоимости газорезательных работ по сравнению с ацетилено-кислородной резкой; незначительным снижением скорости резки (5-25%) по сравнению с ацетилено-кислородной резкой; возможностью использования аппаратуры (резаков), применяемой для ацетилено-кислородной резки, с незначительной переделкой отдельных деталей.

Керосин для резки используется в виде паров. Поэтому резаки имеют специальные испарители, подогреваемые вспомогательным пламенем, или форсунки. Целесообразность применения керосиново-кислородной резки обусловлена возможностью замены керосином ацетилена; сокращением расхода кислорода от 5 до 10 % при его пониженном давлении; сокращением стоимости резки стали до 10 %. Резка с применением керосина разрешается только в цеховых условиях и на открытых площадках, так как она особенно пожароопасна.

Не вступают в химическое взаимодействие с металлами и практически не растворяются в металлах

Аргон (Ar) - бесцветный, без запаха, негорючий, неядовитый газ, почти в 1,5 раза тяжелее воздуха. В металлах нерастворим как в жидком, так и в твердом состояниях. Выпускается ( -79) двух сортов: высшего и первого.

В газе высшего сорта содержится 99,993 % аргона, не более 0,006 % азота и не более 0,0007 % кислорода. Рекомендуется для сварки ответственных металлоконструкций из активных и редких металлов и сплавов, цветных металлов.

В газе первого сорта содержится 99,98 % аргона, до 0,01 % азота и не более 0,002 % кислорода. Рекомендуется для сварки стали и чистого алюминия.

Гелий (Не) - бесцветный газ, без запаха, неядовитый, значительно легче воздуха и аргона. Выпускается ( -75) двух сортов: высокой чистоты (до 99,985 %) и технический (99,8%).

Используется реже, чем аргон, из-за его дефицитности и высокой стоимости. Однако при одном и том же значении тока дуга в гелии выделяет в 1,5 - 2 раза больше энергии, чем в аргоне. Это способствует более глубокому проплавлению металла и значительному увеличению скорости сварки.

Гелий применяют при сварке химически чистых и активных материалов, а также сплавов на основе алюминия и магния.

Азот (N 2) - газ без цвета, запаха п вкуса, неядовитый. Используется только для сварки меди и ее сплавов, по отношению к которым азот является инертным газом. Выпускается ( -74) четырех сортов: высшего - 99,9% азота; 1-го - 99,5%; 2-го - 99,0%; 3-го - 97,0%.

Активные

Защищают зону сварки от воздуха, но сами растворяются в жидком металле либо вступают с ним в химическое взаимодействие

Кислород (О 2) - газ без цвета, запаха и вкуса. Негорючий, но активно поддерживающий горение. Технический газообразный кислород (ГОСТ5583-78) выпускается трех сортов: 1-й сорт - 99,7% кислорода; 2-й - 99,5%; 3-й - 99,2%. Применяется только как добавка к инертным и активным газам.

Углекислый газ (СО 2) - бесцветный, со слабым запахом, с резко выраженными окислительными свойствами, хорошо растворяется в воде. Тяжелее воздуха в 1,5 раза, может скапливаться в плохо проветриваемых помещениях, в колодцах, приямках. Выпускается ( -85) трех сортов: высший-99,8% СО 2 , 1-й-99,5% и 2-й-98,8%. Двуокись углерода 2-го сорта применять не рекомендуется. Для снижения влажности СО 2 рекомендуется установить баллон вентилем вниз и через 1-2 ч открыть вентиль на 8-10 с для удаления воды. Перед сваркой из нормально установленного баллона выпускают небольшое количество газа, чтобы удалить попавший внутрь воздух.

В углекислом газе сваривают чугун, низко- и среднеуглеродистые, низколегированные конструкционные коррозионностойкие стали.

Газовые смеси

Служат для улучшения процесса сварки и качества сварного шва

Смесь аргона и гелия. Оптимальный состав: 50% + 50% или 40% аргона и 60% гелия. Пригоден для сварки алюминиевых и титановых сплавов.

Смесь аргона и кислорода при содержании кислорода 1-5% стабилизирует процесс сварки, увеличивает жидко текучесть сварочной ванны, перенос электродного металла становится мелкокапельным. Смесь рекомендуется для сварки углеродистых и нержавеющих сталей.

Смесь аргона и углекислого газа. Рациональное соотношение - 75-80% аргона и 20-25% углекислого газа. При этом обеспечиваются минимальное разбрызгивание, качественное формирование шва, увеличение производительности, хорошие свойства сварного соединения. Используется при сварке низкоуглеродистых и низколегированных конструкционных сталей.

Смесь углекислого газа и кислорода. Оптимальный состав: 60-80% углекислого газа и 20-40% кислорода. Повышает окислительные свойства защитной среды и температуру жидкого металла. При этой смеси используют электродные проволоки с повышенным содержанием раскислителей, например Св-08Г2СЦ. Шов формируется несколько лучше, чем при сварке в чистом углекислом газе. Смесь применяют для сварки углеродистых, легированных и некоторых высоколегированных конструкционных сталей.

Смесь аргона, углекислого газа и кислорода - трехкомпонентная смесь обеспечивает высокую стабильность процесса и позволяет избежать пористости швов. Оптимальный состав: 75% аргона, 20% углекислого газа и 5% кислорода. Применяется при сварке углеродистых, нержавеющих и высоколегированных конструкционных сталей.

Горючие газы - вещества с низким порогом теплоты сгорания. Это основной компонент которое используется для газоснабжения городов, в промышленности и других сферах жизнедеятельности. Физико-химические характеристики таких газов зависят от наличия в их составе негорючих компонентов и вредных примесей.

Виды и происхождение горючих газов

Горючие газы содержат метан, пропан, бутан, этан, водород и иногда с примесями гексана и пентана. Их получают двумя способами - из природных месторождений и искусственным путем. происхождения - топливо, результат естественного биохимического процесса разложения органики. Большинство залежей расположены на глубине менее 1,5 км и состоят преимущественно из метана с малыми примесями пропана, бутана и этана. С увеличением глубины залегания растет процентное содержание примесей. Добывается из природных залежей или в качестве сопутствующих газов нефтяных месторождений.

Чаще всего залежи природного газа сконцентрированы в осадочных породах (песчаники, галечники). Покрывающими и подстилающими слоями служат плотные глинистые породы. В качестве подошвы в основном выступают нефть и вода. Искусственные - горючие газы, получаемые вследствие термической переработки различного вида твердых топлив (кокс и др.) и производные продукты нефтепереработки.

Основным компонентом природных газов, добываемых в сухих месторождениях, является метан с небольшим количеством пропана, бутана и этана. Природный газ характеризуется постоянством состава, относится к категории сухих. Состав газа, получаемый при нефтепереработке и из смешанных газонефтяных залежей, непостоянен и зависит от величины газового фактора, природы нефти и условий раздела нефтегазовых смесей. В него входит значительное количество пропана, бутана, этана, а также другие легкие и тяжелые углеводороды, содержащиеся в нефти, вплоть до керосиновых и бензиновых фракций.

Добыча горючих природных газов заключается в извлечении его из недр, сбор, удаление лишней влаги и подготовку к транспортировке потребителю. Особенность состоит в том, что на всех стадиях от пласта до конечного потребителя весь процесс герметизирован.

Горючие газы и их свойства

Жаропроизводительность - максимальная температура, выделяемая при полном сгорании сухого газа в теоретически необходимом количестве воздуха. При этом выделяемое тепло расходуется на нагревание Для метана этот параметр в °С равен 2043, бутана - 2118, пропана - 2110.

Температура воспламенения - наименьшая температура, при которой происходит самопроизвольный процесс воспламенения без воздействия внешнего источника, искры или пламени, за счет теплоты выделяемой частицами газа. Этот параметр особенно важен для определения допустимой температуры поверхности аппаратов, используемых в опасных зонах, которая не должна превышать температуру воспламенения. Для такой аппаратуры присваивается температурный класс.

Температура вспышки - наименьшая температура, при которой выделяется достаточное количество паров (на поверхности жидкости) для воспламенения от наименьшего пламени. Это свойство не стоит обобщать с температурой воспламенения, поскольку эти параметры могут разниться в значительной степени.

Плотность газа/пара. Определяется в сравнении с воздухом, чья плотность равна 1. < 1 - растет, > 1 - падает. Например, для метана этот показатель равен 0,55.

Опасность горючих газов

Горючие газы представляют опасность тремя своими свойствами:

  1. Горючесть. Существует риск возникновения пожара, связанный с неконтролируемым воспламенением газа;
  2. Токсичность. Риск отравления газом или продуктами его горения (угарный газ);
  3. Удушение вследствие дефицита кислорода, который может быть замещен другим газом.

Процесс горения представляет собой химическую реакцию, в которую входит кислород. При этом выделяется энергия в виде теплоты, пламени. Воспламеняющим веществом выступает газ. Процесс горения газа возможен при наличии трех факторов:

  • Источник воспламенения.
  • Горючие газы.
  • Кислород.

Целью противопожарной защиты является исключение как минимум одного из факторов.

Метан

Это бесцветный легкий горючий газ без запаха. Нетоксичен. Метан составляет 98% всех природных газов. Считается основным, определяющим свойства природного газа. На 75% состоит из углерода и на 25% из водорода. Масса куб. метра - 0,717 кг. Сжижается при температуре 111 К, при этом его объем уменьшается в 600 раз. Обладает низкой реакционной способностью.

Пропан

Газ пропан - горючий газ, без цвета и запаха. Обладает большей реакционной способностью, чем метан. Содержание в природном газе 0,1-11% по массе. В попутных газах из смешанных газонефтяных месторождений до 20%, в продуктах переработки твердых топлив (бурых и каменных углей, каменноугольной смолы) до 80%. Газ пропан используется в различных реакциях для получения этилена, пропилена, низших олефинов, низших спиртов, ацетона, муравьиной и пропионовой кислоты, нитропарафинов.

Бутан

Горючий газ без цвета, со своеобразным запахом. Бутан газ легко сжимаем и летуч. Содержится в нефтяном газе до 12% по объему. Также получатся в результате крекинга нефтяных фракций и лабораторным путем по реакции Вюрца. Температура замерзания -138 о С. Как и все углеводородные газы, пожароопасен. Вреден для нервной системы, при вдыхании вызывает дисфункцию дыхательного аппарата. Бутан (газ) обладает наркотическими свойствами.

Этан

Этан - газ без цвета и запаха. Представитель углеводородов. Дегидрирование при 550-650 0 С приводит к этилену, свыше 800 0 С - к ацетилену. Содержится в природных и попутных газах до 10%. Выделяется низкотемпературной ректификацией. Значительные объемы этана выделяются при крекинге нефти. В лабораторных условиях получают по реакции Вюрца. Является основным сырьем для получения винилхлорида и этилена.

Водород

Прозрачный газ без запаха. Нетоксичен, в 14,5 раз легче воздуха. По виду водород не отличается от воздуха. Обладает высокой реакционной способностью, широкими пределами воспламенения, весьма взрывоопасен. Входит в состав едва ли не всех органических соединений. Наиболее трудно сжимаемый газ. Свободный водород в природе встречается крайне редко, но в виде соединений очень распространен.

Окись углерода

Бесцветный газ, без вкуса и запаха. Масса 1 куб. м - 1,25 кг. Содержится в высококалорийных газах наряду с метаном и другими углеводородами. Увеличение доли окиси углерода в горючем газе понижает теплоту сгорания. Оказывает токсическое влияние на человеческий организм.

Применение горючих газов

Горючие газы обладают высокой теплотой сгорания, а потому являются высокоэкономичным энергетическим топливом. Широко применяются для коммунально-бытовых нужд, на электростанциях, в металлургии, стекольной, цементной и пищевой промышленности, в качестве автомобильного топлива, при производстве строительных материалов.

Использование горючих газов в качестве сырья для производства таких органических соединений как формальдегид, метиловый спирт, уксусная кислота, ацетон, ацетальдегид, обусловлено наличием в их составе углеводородов. Метан, как основной компонент горючих природных газов, широко применяется для производства различных органических продуктов. Для получения аммиака и различного рода спиртов используется синтез-газ - продукт конверсии метана кислородом или водяным паром. Пиролизом и дегидрогенизацией метана получают ацетилен, наряду с водородом и сажей. Водород, в свою очередь, используется для синтеза аммиака. Горючие газы, и в первую очередь этан, применяют при получении этилена и пропилена, которые в дальнейшем используются в качестве сырья для производства пластмасс, искусственных волокон и синтетических каучуков.

Перспективным видом топлива для многих сфер народного хозяйства является сжиженный метан. Использование сжиженных газов во многих случаях дает большую экономическую выгоду, позволяя снизить материалозатраты на транспортировку и решить проблемы газоснабжения в отдельных районах, позволяет создавать запасы сырья для нужд химической промышленности.

Кислород

Кислород - это газ без вкуса, запаха и цвета, не горючий, но активно поддерживает горение, немного тяжелее воздуха. При нормальном атмосферном давлении (760 мм ртутного столба) при температуре 0° С масса 1 м куб. кислорода равна 1.43 кг, а при нормальном атмосферном давлении и температуре 20° С, масса 1 м куб. кислорода равна 1.33 кг, масса 1 м куб воздуха равна 1.29 кг.

В промышленности кислород получают из атмосферного воздуха методом глубокого охлаждения и ректификации.

Технический кислород для газопламенных работ получают в специальных установках из атмосферного воздуха в жидком состоянии. Жидкий кислород - это легко подвижная, голубоватая жидкость. Температура кипения (начало испарения) жидкого кислорода минус 183° С.

При нормальных условиях и температуре минус 183° С. легко испаряется, превращаясь в газообразное состояние. При повышении температуры интенсивность испарении увеличивается. Из 1 литра жидкого кислорода, образуется около 860 литров газообразного.

Кислород обладает большой химической активностью. Реакция соединения его с маслами, жирами, угольной пылью, ворсинками ткани и т.д., приводит их к мгновенному окислению, самовоспламенению и взрыву при обычных температурах.

Кислород в смеси с горючими газами и парами горючих жидкостей образует в широких пределах взрывчатые смеси.

«Кислород газообразный технический» согласно ГОСТ 5583- 78 выпускается для сварки и резки трех сортов: 1-й - чистотой не менее 99,7%, 2-й - не менее 99,5%, 3-й - не менее 99,2% по объёму. Чем меньше в кислороде газовых примесей, тем выше скорость реза, чище кромки и меньше расход кислорода. На предприятие поставляется в газообразном состоянии, в стальных кислородных баллонах «голубого» цвета ёмкостью 40 дм. куб. и давлением 150 кгс/см2. Сжатый кислород хранят и транспортируют в баллонах по ГОСТ 949-73.

Пропан - технический, бесцветный газ с резким запахом, состоящий из пропана С3Н8 или из пропана и пропилена С3Н6, суммарное содержание которых должно быть не менее 93%. Получают пропан при переработке нефтепродуктов. Пропанобутановая смесь – это смесь газов главным образом технического пропана и бутана. Эти газы относятся к группе тяжёлых углеводородов. Сырьём для их получения являются природные нефтяные газы, отходящие газы нефтеперерабатывающих заводов. Эти газы в чистом виде или в виде смесей при нормальной температуре и на большом повышении давления могут быть переведены из газообразного состояния в жидкое состояние.Хранится и транспортируется пропанобутановая смесь в жидком состоянии, а используется в газообразном.

Газообразная пропанобутановая смесь - это горючий газ без вкуса, запаха и цвета, тяжелее воздуха в 2 раза, поэтому при утечке газа он не рассеивается в атмосфере, а опускается вниз и заполняет углубления пола или местности.

Газообразная пропанобутановая смесь при атмосферном давлении не обладает токсичным (отравляющим) воздействием на организм человека, так как мало растворяется в крови. Но, попадая в воздух, смешивается с ним, вытесняет и уменьшает содержание кислорода в воздухе. Человек, находящийся, а такой атмосфере испытывает кислородное голодание, а при значительных концентрациях газа в воздухе может погибнуть от удушья.

Предельно допустимая концентрация пропан-бутана в воздухе рабочей зоны должна быть не более 300 мг/м 3 (в пересчёте на углерод).При попадании жидкого пропан-бутана на кожные покровы тела, нормальная температура которого 36,6 град. С, происходит быстрое его испарение и интенсивный отбор тепла с поверхности тела, затем наступает обморожение.

По ГОСТ 20448-80 промышленность выпускает пропанобутановую смесь 3 марок:

  • пропан технический, с содержанием пропана более 93%, бутана - менее 3 процентов;
  • бутан технический, с содержанием бутана менее 93%, пропана не более 4 процентов;
  • пропанобутановая смесь, 2-х типов: зимняя и летняя.

На предприятия для газопламенной обработки металлов поставляется пропанобутановая смесь в стальных баллонах зимняя и летняя.

Зимняя пропанобутановая смесь содержит 15% пропана, 25% бутана и прочих компонентов.

Летняя пропанобутановая смесь содержит 60% бутана, 40% пропана и прочих компонентов.

Для сжигания I куб. м газообразной пропано-бутановой смеси требуется 25-27 куб. м воздуха или 3,58 - 3,63 кг кислорода.

Температура воспламенения с воздухом:

  • пропана - 510 град. С;
  • бутана - 540 град. С

Температура воспламенения пропанобутановой смеси:

  • с воздухом 490-510 град. С;
  • с кислородом - 465-480 град. С.

Температура пламени пропанобутановой смеси с кислородом зависит от её состава и равна 2200-2680 град. С. При окислительном пламени (избыток кислорода) температура повышается.

Теплотворная способность пропанобутановой смеси равна 93000 Дж/м куб. (22000 ккал/м куб.).

Скорость горения пропанобутановой смеси:

  • при обычном горении 0,8 – 1,5 м/сек.;
  • при дистанционном (со взрывом) 1,5 - 3,5 км/сек.

Пределы взрывоопасности пропан-бутана при нормальном давлении составляют:

    • в смеси с воздухом:
  • нижний – 1,5%;
  • верхний – 9,5%.нижний – 2%;
    • в смеси с кислородом:
  • верхний – 46%.

Пропанобутановые смеси в жидком виде разрушают резину, поэтому необходимо тщательно следить за резиновыми изделиями, применяемыми в газопламенной аппаратуре, и в случае необходимости производить их своевременную замену.

Наибольшая опасность разрушения резины существует зимой, вследствие большей вероятности попадания жидкой фазы пропанобутановой смеси в рукава.

Ацетилен - это горючий газ, без цвета, вкуса, с резким специфическим чесночным запахом, он легче воздуха. Его плотность по отношению к воздуху 0,9.

При нормальном атмосферном давлении (760 мм ртутного столба) и температуре плюс 20 град. С 1 м куб. имеет массу 1,09 кг, воздух 1,20 кг.

При нормальном атмосферном давлении и температуре от - 82,4 градуса до - 84 градусов С ацетилен переходит из газообразного в жидкое состояние, а при температуре минус 85 град. С затвердевает.

Ацетилен - единственный широко применяемый в промышленности газ, горение и взрыв которого возможны в отсутствии кислорода или других окислителей.

При газопламенной обработке металлов ацетилен используют либо в газообразном состоянии, получая его в передвижных или стационарных ацетиленовых генераторах, либо растворённым в ацетиленовых баллонах. Растворенный ацетилен по ГОСТ 5457-75 представляет собой раствор газообразного ацетилена в ацетоне, распределённый в пористом наполнителе под давлением до 1,9 МПА (19 кгс/см 2 ). В качестве пористых наполнителей используются насыпные – берёзовый активированный уголь (БАЦ) и литые пористые массы.

Основным сырьём для получения ацетилена является карбид кальция. Это твёрдое вещество тёмно-серого или коричневатого цвета. Ацетилен получается в результате разложения (гидролиза) кусков, карбида кальция водой. Выход ацетилена на 1 кг карбида кальция составляет 250 дм куб. Для разложения 1 кг карбида кальция требуется от 5 до 20 дм куб. воды. Карбид кальция транспортируется в герметически закрытых барабанах. Масса карбида в одном барабане от 50 до 130 кг.

При нормальном атмосферном давлении ацетилен с воздухом и кислородом образуют взрывоопасные смеси. Пределы взрывоопасности ацетилена с воздухом:

  • нижний – 2,2%;
  • верхний – 81%.

Пределы взрывоопасности ацетилена с кислородом:

  • нижний – 2,3%;
  • верхний – 93%.

Наиболее взрывоопасные концентрации ацетилена с воздухом и кислородом составляют:

  • нижний – 7%;
  • верхний – 13%.

Горючие газы

Для образования высокотемпературного пламени, применяемого при газопламенной обработке, используются различные горючие газы и пары горючих жидкостей. В большинстве случаев это предельные углеводороды – органические соединения углерода и водорода или смеси различных углеводородов.

Ацетилен получил наибольшее применение из-за наиболее высокой температуры пламени, образующегося при сгорании ацетилена в кислороде. Это единственный газ, горение которого возможно при отсутствии кислорода (или окислителя вообще).

Для работы ацетилен используется в двух видах – в растворенном (в баллонах) либо в газообразном (из ацетиленовых генераторов). Растворенный ацетилен – это газообразный ацетилен, растворенный в ацетоне. Преимущества этого состояния – безопасность проведения работ.

Кроме ацетилена при сварке и резке металлов используют и другие, более дешевые и менее дефицитные газы-заменители ацетилена (горючие газы и пары горючих жидкостей).

Горючие газы-заменители ацетилена подразделяются на две основные группы: сжимаемые и сжиженные .

К сжимаемым газам относятся водород, метан и такие много многокомпонентные газы, как природный, коксовый, городской и нефтяной.

К сжиженным газам относятся пропан, бутан и их смеси.

Сжимаемыми или сжатыми газами-заменителями ацетилена называются такие газы, которые при обычных условиях хранения и транспортировки не переходят в жидкое состояние ни при каких давлениях. Следуя этому определению, к сжимаемым можно отнести газы, критическая температура которых ниже встречающейся на практике температуры воздуха, ниже примерно –40 °С (ацетилен под это определение не подходит, так как его критическая температура равна 35,7 °С).

Газы-заменители используются в тех случаях, когда для осуществления процессов газопламенной обработки не требуется подогревающее пламя с очень высокой температурой. К таким процессам относятся сварка легкоплавких металлов (алюминий, магний и их сплавы, свинец), пайка высоко- и низкотемпературными припоями, поверхностная закалка, сварка тонкой стали, кислородная разделительная и поверхностная резка. Наиболее широкое применение газов-заменителей связано с кислородной разделительной резкой, при выполнении которой температура подогревающего пламени влияет лишь на продолжительность предварительного нагрева металла. Поэтому для резки могут быть использованы все газы-заменители, у которых температура пламени при сгорании в смеси с кислородом не ниже 2000 °С, а удельная теплота сгорания не менее 10 МДж/м 3 .

Применение местных дешевых газов вместо ацетилена значительно снижает стоимость газопламенной обработки и упрощает организацию работ.

Использование газов-заменителей не ухудшает качество сварки и резки металлов; применение их дает высокую чистоту кромок при резке металлов малых толщин. При сварке температура пламени должна примерно в два раза превышать температуру плавления металлов, поэтому газы-заменители, температура пламени которых ниже, чем у ацетилена, необходимо использовать для сварки металлов с более низкой температурой плавления, чем у сталей.

Выбор горючего газа зависит от его теплотворной способности.

Низшей теплотворной способностью (низшей теплотой сгорания) газа называется количество теплоты, получаемое при полном сгорании 1 м 3 или 1 кг горючего газа или жидкости. Чем выше теплотворная способность газа, тем меньше его расход при сварке и резке металлов, и тем оно более пригодно для газопламенной обработки. Для полного сгорания одинакового объема различных горючих газов требуется различное количество кислорода, от этого зависит эффективная мощность пламени.

Эффективной мощностью пламени называется количество теплоты, вводимой в нагреваемый металл в единицу времени.

Выражает тепловую эффективность газов-заменителей ацетилена. Он представляет собой отношение расхода газа-заменителя к расходу ацетилена при одинаковом тепловом воздействии на металл:

Этот коэффициент может быть также определен, как отношение теплотворной способности ацетилена к теплотворной способности газа-заменителя ацетилена:

ЛИТЕРАТУРА

  • Основы сварочного дела / В.Г. Геворкян. – М.: Высшая школа, 1991. – 239 с.
  • Газосварщик / Под ред. В.В. Шапкина. – СПб.: Политехника, 2003. – 354 с.
  • Сварка и резка в промышленном строительстве / Под ред. Б.Д. Малышева. – М.: Стройиздат, 1980. – 782 с.
  • Сварка, резка, пайка металлов – М.: Аделант, 2003. – 192 с.
  • Газовая сварка / В.Г. Лупачев. – Мн.: Высшая школа, 2001. – 400 с.
  • Газовая сварка и резка металлов / И.И. Соколов. – М.: Высшая школа, 1986. – 304 с.
  • Справочник молодого газосварщика и газорезчика / Д.З. Амигуд. – М., Высшая школа, 1974. 207 с.
  • Сварка в машиностроении. Т.1 / Под ред. Н.А. Ольшанского. 1978. 504 с.
  • Газопламенная обработка металлов с использованием газов-заменителей ацетилена / А.К. Нинбург. М., Машиностроение, 1976. – 152 с.
  • Газопламенная обработка металлов / Г.В. Полевой, Г.К. Сухинин. – М.: Академия, 2005. – 336 с.