Назначенный ресурс до первого ремонта. Раз о ресурсе энергооборудования

  • Дата: 19.12.2023

АННОТАЦИЯ. Рассматриваются понятия «назначенный ресурс» и «назначенный срок службы оборудования». Обсуждается взаимосвязь этих показателей с техническим состоянием оборудования.

КЛЮЧЕВЫЕ СЛОВА: парковый ресурс, назначенный ресурс, назначенный срок службы, индивидуальный ресурс, техническое состояние, техническое диагностирование.

Ведение

Основную причину катастрофы на гидроагрегате № 2 Саяно-Шушенской ГЭС в августе 2009 г. многие связывают с высокой степенью износа оборудования. В качестве основного аргумента приводятся данные об исчерпании назначенного срока службы данного гидроагрегата в ноябре 2009 г. Другими словами, авария произошла за три месяца до достижения этого срока. Данное утверждение не выглядит бесспорным, ем более что временное рабочее колесо гидротурбины (её наиболее ответственный и повреждаемый узел) было заменено на штатное на ГА b 2 в ноябре 1986 г. Чтобы разобраться в этом тросе, необходимо ещё раз обратиться к терминам, относящимся к показателям надежности оборудования, и вспомнить историю назначения этих характеристик.

Что такое «назначенный ресурс» и «назначенный срок службы»

Согласно ГОСТ 27.002-89 под назначенным ресурсом понимается «суммарная наработка, при достижении которой эксплуатация объекта должна быть прекращена независимо от его технического состояния», а под понятием «назначенный срок службы» - «календарная продолжительность эксплуатации, при достижении которой эксплуатация объекта должна быть прекращена независимо от его технического состояния».

Оба определения достаточно категоричны и не допускают их различного толкования, если бы не приведенное в том же стандарте примечание: «Примечание. По истечении назначенного ресурса (срока службы...) объект должен быть изъят из эксплуатации, и должно быть принято решение, предусмотренное соответствующей нормативно-технической документацией - направление в ремонт, списание, уничтожение, проверка и установление нового назначенного срока и т.д.».

Оказывается, жизнь оборудования не заканчивается с исчерпанием его назначенного ресурса (срока службы). Именно это и реализуется на практике и в нашей стране, и за рубежом. Российская экономика не готова сегодня выводить из эксплуатации энергетическое оборудование, отработавшее назначенный ресурс или срок службы.

Но это не означает, что на электростанциях страны должно эксплуатироваться оборудование, не удовлетворяющее требованиям безопасности и надежности. Продление ресурса (срока службы) оборудования, зданий и сооружений сверх назначенного должно обосновываться и должным образом оформляться.

Следует дать пояснения к определениям назначенного ресурса и назначенного срока службы.

Несмотря на схожесть определений этих терминов, они между собой в корне отличаются. Ресурс, как правило, назначается для элементов оборудования, работающего при температуре 450°С и выше, т.е. в условиях протекания в металле процессов ползучести и активных структурных превращений, приводящих к неминуемому достижению предельного состояния металла, потере оборудованием работоспособного состояния. Под назначенный ресурс конструктор оборудования подбирает типоразмер деталей, материал и условия их эксплуатации. Ресурс оборудования можно рассчитать и спрогнозировать.

Назначенный срок службы выбирается из экономических соображений и трактуется как срок накопления амортизационных начислений, достаточных для замены устаревшего оборудования на новое. Часто для оборудования с различным назначенным сроком службы используются одни и те же нормы расчета на прочность. Предполагается, что оборудование должно эксплуатироваться не менее назначенного срока службы. При исчерпании назначенного срока службы при удовлетворительном состоянии оборудования назначается новый срок, который обосновывается опытом эксплуатации и гарантированно не приведет к выходу из строя оборудования до очередной ревизии. Неверно требовать от организации, эксплуатирующей оборудование, и экспертных организаций, проводящих техническое диагностирование, рассчитывать и обосновывать остаточный ресурс низкотемпературных элементов энергоустановок, поскольку для этих деталей корректно рассчитать остаточный ресурс нельзя.

Назначение срока службы не исключает протекания низкотемпературных процессов износа, приводящих к более раннему выходу из строя оборудования, таких, как коррозия, эрозия и др. Если конструктивно не удается исключить риск раннего выхода из строя оборудования, ему присваивается статус быстроизнашиваемого. Для такого оборудования порядок контроля и замены специально описывается в нормативных документах.

Для оборудования тепловых электростанций отдельно назначается ресурс для высокотемпературных элементов и срок службы для остальных деталей. Так, в ГОСТ 27625-88 отмечается:

«2.1.4. Полный назначенный срок службы энергоблока и входящего в него основного оборудования выпуска до 1991 г. - не менее 30 лет, оборудования выпуска с 1991 г. - 40 лет, кроме быстроизнашиваемых элементов оборудования, перечень и сроки службы которых установлены в стандартах или технических условиях на конкретный вид оборудования.

2.1.5. Полный назначенный ресурс составных частей оборудования энергоблока, работающих при температуре 450°С и выше, - не менее 200000 ч, кроме быстроизнашиваемых элементов, перечень и сроки службы которых установлены в стандартах или технических условиях на конкретный вид оборудования.»

История появления терминов парковый ресурс и индивидуальный ресурс

Согласно под парковым ресурсом понимается: «наработка однотипных по конструкции, маркам стали и условиям эксплуатации элементов теплоэнергетического оборудования, в пределах которой обеспечивается их безаварийная работа при соблюдении требований действующей нормативной документации». Индивидуальный ресурс - это «назначенный ресурс конкретных узлов и элементов, установленный расчетно-опытным путем с учетом фактических размеров, состояния металла и условий эксплуатации».

При создании энергоблоков 150 - 300 МВт назначенный ресурс их высокотемпературных элементов составлял 100 тыс.ч. Наработка головных блоков приблизилась к этому ресурсу к концу 70-х годов прошлого века. При существовавшей в то время степени загрузки энергомашиностроительных предприятий реализовать программу повсеместной замены оборудования достигшего назначенного ресурса не представлялось возможным. Поэтому по инициативе, прежде всего, турбостроительных заводов, было высказано пожелание увеличить назначенный ресурс энергоблоков. Для решения данной проблемы по заданию трёх министерств (министерств энергетики, энергетического машиностроения и тяжелого машиностроения) были образованы несколько межведомственных комиссий, которые организовали проведение серии комплексных научно-исследовательских работ. В рамках этих работ анализировался опыт эксплуатации энергоблоков, исследовался длительно работавший металл ответственных элементов оборудования, разрабатывались методы и средства контроля металла и технического диагностирования. Силами специализированных бригад проводился выборочный контроль этих элементов на электростанциях. Итогом работы межведомственных комиссий стало решение об увеличении назначенного ресурса энергоблоков сначала до 170 тыс.ч, а затем и до 220 - 270 тыс.ч. Для того чтобы отличить новый назначенный ресурс от ресурса, назначенного при проектировании оборудования, его назвали парковый ресурс. Было принято волевое решение приравнивать ресурс энергоблока к ресурсу паровой турбины, а её ресурс, в свою очередь, к ресурсу высокотемпературных роторов. Считается, что замена этой наиболее ответственной и дорогостоящей детали турбины и блока делает нерентабельным и нецелесообразным продолжение срока эксплуатации остальных узлов и деталей блока. При этом другие высокотемпературные элементы котлов, турбин и паропроводов могут иметь свой парковый ресурс, не совпадающий с парковым ресурсом энергоблока. В случае более раннего исчерпания этими элементами своего ресурса должна производиться их замена, а эксплуатация блока будет продолжена.

Понятие парковый ресурс относится только к высокотемпературным элементам тепломеханического оборудования ТЭС.

Увеличить более чем в два раза назначенный ресурс энергоблоков позволили два фактора:

Существовавший ранее при проектировании подход к расчету на прочность был избыточно консервативен;

В 1971 г. из-за массовых повреждений труб поверхностей нагрева паровых котлов директивно была снижена температура острого пара и пара горячего промперегрева с 565 до 545°С. Для применяемого в теплоэнергетике класса сталей снижение температуры на 20° эквивалентно увеличению остаточного ресурса металла высокотемпературных элементов, ориентировочно, в четыре раза.

Позднее (в середине 80-х годов) аналогичная попытка увеличения назначенного ресурса была предпринята применительно к блокам 500 - 800 МВт. Но для этих энергоблоков по итогам всестороннего рассмотрения значение паркового ресурса было оставлено на уровне 100 тыс.ч., поскольку эти блоки уже изначально проектировались на ресурс 100 тыс. ч. при температуре эксплуатации 540°С, а нормы расчета на прочность к тому времени были актуализированы.

Справедливости ради следует отметить, что не для всех элементов оборудования энергоблоков парковый ресурс превысил значения первоначально назначенного ресурса 100 тыс.ч. Для некоторых типоразмеров паропроводов парковый ресурс гибов по результатам анализа составил 70-90 тыс.ч.

К 90-м годам наработка головных блоков приблизилась к значениям паркового ресурса, но актуальность продления срока их службы сохранилась. Второй этап кампании по продлению ресурса установленного оборудования был связан с ведением понятия индивидуального ресурса. Значения паркового ресурса устанавливаются, исходя из наиболее неблагоприятного сочетания показателей, характеризующих эксплуатацию оборудования и свойства металла ответственных элементов. При рассмотрении возможности продления ресурса конкретного оборудования, как правило, имеются дополнительные резервы, позволяющие назначить дополнительный ресурс эксплуатации без снижения показателей надежности. По опыту ВТИ прогнозируется, что индивидуальный ресурс ответственных элементов тепломеханического оборудования превысит парковый ресурс в среднем в полтора раза. Из-за фактора -неопределенности при назначении индивидуального ресурса оборудования не разрешается единовременно продлевать его ресурс (срок службы) более чем на 50 тыс.ч. или 8 лет. Поэтому за срок службы оборудования возможно несколько процедур продления ресурса (срока службы).

Применительно к современным условиям наиболее актуализированная процедура продления ресурса описана в стандарте организации СТО "7330282.27.100.001-2007 . Ответственность за организацию процедуры продления ресурса установленного энергетического оборудования возлагается на руководителя эксплуатирующей организации. К техническому диагностированию ответственных элементов оборудования должна привлекаться специализированная или квалифицированная экспертная организация. По результатам технического диагностирования с учетом оценки целесообразности дальнейшей эксплуатации решение о продлении индивидуального ресурса оборудования принимает владелец оборудования. Федеральный орган исполнительной власти, уполномоченный в области промышленной безопасности, утверждает заключение специализированной или экспертной организации, если объект относится к оборудованию, работающему под избыточным давлением, либо при температуре более 115°С.

В исключительных случаях, даже при приближении состояния металла к предельному, ресурс оборудования можно продлить, применяя соответствующие технологии ремонта или накладывая ограничения на режимы его эксплуатации. Среди ремонтных технологий наибольшее распространение получила восстановительная термическая обработка (ВТО) паропроводов. В ряде случаев после проведения ВТО удается назначить паропроводу повторно ресурс, равный по величине парковому.

Взаимосвязь технического состояния оборудования с его наработкой и сроком службы

Техническое состояние оборудования можно оценивать как по показателям надежности, так и по эффективности эксплуатации.

Бытует мнение, что физический ресурс оборудования, установленного на объектах электроэнергетики, исчерпан и, того и гляди, завтра начнутся массовые разрушения и отказы. На самом деле ресурс (срок службы) оборудования можно продлевать до бесконечности, но при условии, что оборудование своевременно и качественно проходит техническое диагностирование и его элементы, исчерпавшие физический (предельный) ресурс, своевременно ремонтируются или заменяются. Не сами технические устройства имеют предельный ресурс, а их высоконагруженные элементы и детали. К примеру, не паровой котел имеет предельный ресурс по показателям надежности, а его элементы, такие, как трубы поверхностей нагрева, коллекторы, барабан, перепускные трубы. Зачастую, за срок службы котла его часто повреждаемые элементы заменяются несколько раз.

Однако это не означает, что энергетическое оборудование целесообразно эксплуатировать сколь угодно долго. С наработкой оборудования неминуемо будут расти затраты на его ремонт и техническое обслуживание. В условиях сдерживания роста тарифов на электрическую и тепловую энергию, начиная с определенного момента, будет невыгодно эксплуатировать длительно работавшее оборудование. Это момент и следует отождествлять с физическим износом оборудования.

Как отмечалось выше, не только показатели надежности характеризуют техническое состояние оборудования. С наработкой оборудования неминуемо будут ухудшаться и его технические показатели, отражающие эффективность энергоустановки. При ремонте тепломеханического оборудования большой объем работ связан с восстановлением зазоров, сокращением присосов и т.п. Требование поддержания технических показателей на приемлемом уровне будет также приводить к росту ремонтных затрат по мере старения оборудования. Так как эффективность эксплуатации энергоустановок не относится к категории безопасности, решение о приемлемом уровне эффективности оборудования принимает его владелец самостоятельно без участия федеральных органов власти.

Оценка технического состояния по обоим показателям напрямую зависит от качества проведения технического диагностирования оборудования, а именно - от применяемых методов и средств диагностики, квалификации экспертов и понимания ими реальных процессов, приводящих к исчерпанию ресурса. Применительно к большинству элементов тепломеханического оборудования ТЭС накопленный за многие десятилетия опыт позволяет сформулировать необходимый и достаточный объем контроля металла и иных видов диагностики, исключающий массовый выход оборудования из строя. Для некоторых элементов оборудования протекающие в металле процессы пока не достаточно изучены. Например, с 2003 г. стали обнаруживаться массовые повреждения валов сборных роторов паровых турбин частей низкого и среднего давления. До окончательного изучения природы этих повреждений и решения данной проблемы, чтобы исключить разрушение роторов при эксплуатации, в действующих стандартах предусмотрен контроль валов всех типов роторов после наработке 100 тыс.ч, далее -каждые 50 тыс.ч со снятием насадных дисков.

В электроэнергетике наряду с описанным подходом, основанным на изучении физических процессов, протекающих при эксплуатации оборудования, все большее распространение получает формализованный подход, увязывающий напрямую техническое состояние оборудования с его наработкой. Примером такой методологии может служить нормативный документ ОАО РАО «ЕЭС России» , в основу которого положена широко применяемая в международной практике методология фирмы Deloitte&Touche.

Согласно этой методологии физический износ оборудования рассчитывается как отношение его фактического срока службы к назначенному. Анализ степени физического износа оборудования осуществляется по шкале приведенной в табл. 2. По данной методологии ЗАО «АйТи Энерджи Аналитика» провел оценку технического состояния оборудования гидроэлектростанций России . По его анализу больше половины установленных на ГЭС гидротурбин имеют физический износ, превышающий 95% (группа «3» по табл. 2). Иными словами, это оборудование может быть использовано только в качестве металлолома. В работоспособные группы (от «А» до «Д») попало всего лишь 23% проанализированного парка гидротурбин. При этом гидроагрегат № 2 Саяно-Шушенской ГЭС по данной оценке занимал далеко не самую худшую позицию.

Данный подход может, конечно, служить неким ориентиром для владельца о сроках подготовки к замене оборудования, но ни в коем случае не снимает с него ответственности за проведение диагностики оборудования и адекватное реагирование на её результаты.

Выводы

1. Не исчерпание срока службы оборудования определяет угрозу безопасности и надежности его эксплуатации, а отсутствие объективной информации о техническом состоянии оборудования.

2. Формализованный подход к оценке технического состояния оборудования, основанный на сопоставлении фактического и назначенного сроков службы, не может заменить необходимость проведения технического диагностирования конкретных объектов, а лишь дополняет его.

Основным источником всех наших проблем является человеческий фактор, определяющий уровень безопасности и надежности оборудования на всех этапах его жизненного цикла, включая формирование общей технической политики в отрасли.

Литература

1. ГОСТ 27.002-89. Надежность в технике. Основные понятия. Термины и определения.

2. ГОСТ 27625-88. Блоки энергетические для тепловых электростанций. Требования к надежности, маневренности и экономичности.

3. РД 10-577-03. Типовая инструкция по контролю металла и продлению срока службы основных элементов котлов, турбин и трубопроводов тепловых электростанций. М., ФГУП «НТЦ «Промышленная безопасность», 2004.

4. СТО 17230282.27.100.005-2008. Основные элементы котлов, турбин и трубопроводов ТЭС. Контроль состояния металла. Нормы и требования. М., НП «ИНВЭЛ», 2009.

5. Тумановский А.Г., Резинских В.Ф. Стратегия продления ресурса и технического перевооружения тепловых электростанций. «Теплоэнергетика», №6,2001 г., с. 3-10.

6. СТО 17330282.27.100.001 - 2007. Тепловые электрические станции. Методики оценки состояния основного оборудования. М., НП «ИНВЭЛ», 2007.

7. Методология и руководство по проведению оценки бизнеса и/или активов ОАО РАО «ЕЭС России» и ОАО ДЗО РАО «ЕЭС России», Deloitte&Touche, 2003 г.

8. Рэнкинги физического износа оборудования ГЭС. ЗАО «АйТи Энерджи Аналитика». М., 2009,с. 49.

Для повышения долговечности ремонтируемых машин, отдельных узлов, соединений, а также деталей путем их восстановления, выбора рационального способа восстановления и материала покрытия, определения расхода запасных частей весьма важно знать и уметь оценивать величины предельных! износов и других показателей долговечности.

Согласно ГОСТ 27.002-83, долговечность - свойство объекта (детали, узла, машины) сохранять работоспособное состояние до наступления предельного состояния при установленной системе технического обслуживания и ремонта. В свою очередь, работоспособное состояние - состояние объекта, при котором значение всех параметров, характеризующих способность выполнять заданные функции, соответствует требованиям нормативно-технической и (или) конструкторской документации; предельное состояние - состояние объекта, при котором его дальнейшее применение по назначению недопустимо или нецелесообразно, либо восстановление его исправного или работоспособного состояния невозможно или нецелесообразно. При этом следует иметь в виду, что для неремонтируемых объектов предельного состояния может достигнуть не только неработоспособный объект, но и работоспособный, применение которого оказывается недопустимым согласно требованиям безопасности, безвредности, экономичности, эффективности. Переход такого неремонтируемого объекта в предельное состояние происходит раньше возникновения отказа.

С другой стороны, объект может оказаться в неработоспособном состоянии, не достигнув предельного состояния. Работоспособность такого объекта, а также объекта, находящегося в предельном состоянии, восстанавливается с помощью ремонта, при котором происходит восстановление ресурса объекта в целом.

Основными техническими оценочными показателями долговечности являются ресурс и срок службы. При характеристике показателей следует указывать вид действия после наступления предельного состояния объекта (например, средний ресурс до капитального ремонта; гамма-процентный ресурс до среднего ремонта и т. д.). В случае окончательного снятия с эксплуатации объекта, обусловленного предельным состоянием, показатели долговечности называются: полный средний ресурс (срок службы), полный гамма-процентный ресурс (срок службы), полный назначенный ресурс (срок службы). Полный срок службы включает в себя продолжительности всех видов ремонта объекта. Рассмотрим основные показатели долговечности и их разновидности, конкретизирующие этапы или характер эксплуатации.

Технический ресурс - наработка объекта от начала его эксплуатации или ее возобновления после ремонта определенного вида до перехода в предельное состояние.

Срок службы - календарная продолжительность от начала эксплуатации объекта или ее возобновления после ремонта определенного вида до перехода в предельное состояние.

Наработка - продолжительность или объем работы объекта.

Наработка объекта может быть:

1) наработка до отказа - от начала эксплуатации объекта до возникновения первого отказа;

2) наработка между отказами - от окончания восстановления работоспособного состояния объекта после отказа до возникновения следующего отказа.

Технический ресурс представляет собой запас возможной наработки объекта. Различают следующие виды технического ресурса: доремонтный ресурс -наработка объекта до первого капитального ремонта; межремонтный ресурс - наработка объекта от предыдущего до последующего ремонта (число межремонтных ресурсов зависит от числа капитальных ремонтов); послеремонтный ресурс -наработка от последнего капитального ремонта объекта до его перехода в предельное состояние; полный ресурс - наработка от начала эксплуатации объекта до его перехода в предельное состояние, соответствующее окончательному прекращению эксплуатации. Виды сроков службы подразделяются так же, как и ресурсы.

Средний ресурс - математическое ожидание ресурса. Показатели «средний ресурс», «средний срок службы», «средняя наработка» определяют по формуле

где - средняя наработка до отказа (средний ресурс, средний срок службы); f(t)-плотность распределения наработки до отказа (ресурса, срока службы); F(t) - функция распределения наработки до отказа (ресурса, срок службы).

Гамма-процентный ресурс - наработка, в течение которой объект не достигает предельного состояния с заданной вероятностью γ, выраженной в процентах. Гамма-процентный ресурс , гамма-процентный срок службы определяют по следующему уравнению:

где t γ - гамма-процентная наработка до отказа (гамма-процентный ресурс, гамма-процентный срок службы).

При γ = 100% гамма-процентная наработка (ресурс, срок службы) называется установленной безотказной наработкой (установленным ресурсом, установленным сроком службы). При γ=50% гамма-процентная наработка (ресурс, срок службы) называется медианной наработкой (ресурсом, сроком службы).

Отказ - событие, заключающееся в нарушении работоспособного состояния объекта.

Назначенный ресурс - суммарная наработка объекта, при достижении которой применение по назначению должно быть прекращено.

Назначенный ресурс (срок службы) установлен с целью принудительного заблаговременного прекращения применения объекта по назначению, исходя из требований безопасности или: экономического анализа. При этом в зависимости от технического состояния, назначения, особенностей эксплуатации объект после достижения назначенного ресурса может эксплуатироваться дальше, сдан в капитальный ремонт, списан.

Предельный износ - это износ, соответствующий предельному состоянию изнашивающегося изделия. Основными признаками приближения предельного износа являются увеличение расхода топлива, снижение мощности, снижение прочности деталей, т. е. дальнейшая работа изделия становится технически ненадежной и экономически нецелесообразной. При достижении предельных износов деталей и соединений их полный ресурс (Т п) исчерпывается, и необходимо принимать меры для его восстановления.

Допустимый износ - износ, при котором изделие сохраняет работоспособность, т. е. при достижении этого износа детали или соединения могут работать без их восстановления еще целый межремонтный срок. Допустимый износ меньше предельного, и остаточный ресурс деталей не исчерпан.

Элерон, читайте ГОСТ, а не формуляр;-).
Хотя когда я в последние разы заглядывал в формуляры (давненько), там были "ресурсы" и "сроки службы".
У буржуев используется туманный термин "Life".
На эту тему я уже как-то постил одно свое старое "сочинение". Если народ не осудит, то могу воспроизвести для размышлений (но длинновато;-)):

1. ОБЩИЕ ПРИНЦИПЫ ОРГАНИЗАЦИИ РАБОТ ПО ОБЕСПЕЧЕНИЮ ДОЛГОВЕЧНОСТИ АВИАТЕХНИКИ ЗА РУБЕЖОМ

Требования параграфов авиационных правил FAR 25.571 и JAR 25.571 не регламентируют установления назначенных ресурсов (сроков службы), а требуют расчетно-аналитического и экспериментального обоснования перечней агрегатов и узлов планера, эксплуатируемых по ресурсу (safe life) или в соответствии с концепцией "устойчивости к повреждениям" или "безопасной повреждаемости" (damage tolerance), т.е. методами ТЭС.
Такими базовыми положениями FAR 25 являются:
" 25.571 (а). Общие положения. Оценка должна показать, что катастрофический отказ вследствие усталости, коррозии или случайного повреждения будет предупрежден в течение срока эксплуатации (throughout the operational life) самолета. ...";
" 25.571 (b). ... Оценка степени влияния повреждения на остаточную прочность конструкции в любой момент в течение срока эксплуатации должна учитывать первоначальную возможность его обнаружения и последующий рост при повторяющихся нагружениях. ...";
" 25.571 (с). Оценка усталостной прочности (безопасного срока службы). ... Эта конструкция должна быть способна выдерживать повторяющиеся нагружения... в течение срока службы до списания (service life) без выявляемых трещин, что должно быть показано анализом, подтвержденным результатами испытаний. ...".
Интересно отметить, что даже в терминологии по ЭТХ за рубежом практически не применяется термин "назначенный ресурс", используется либо просто "life" как термин, объединяющий понятия ресурса и срока службы и используемый в контексте (как, например, в цитатах из FAR, приведенных выше - operational life). Следует указать, что аналогами русских терминов "назначенный ресурс (срок службы)" являются английские термины "ultimate life" или "declared life (maximum permitted life)", которые в тексте FAR отсутствуют.
Термин "time between overhaul (TBO)", определяется не как назначенный межремонтный ресурс, а обозначает периодичность плановых контрольно-восстановительных работ (КВР), выполняемых на изделии после демонтажа его с борта ВС (наработку между очередными плановыми КВР) .
Таким образом разработка ВС и КИ ведется исходя из предельного экономически обоснованного срока эксплуатации ВС (КИ), а их долговечность характеризуется и оценивается с использованием комплекса показателей надежности, не включающих такие традиционные для отечественной практики показатели, как назначенные ресурсы и сроки службы.
Не практикуется также поэтапное продление ресурсов ВС. Самолеты за рубежом поставляются заказчикам с установленными при сертификации и отраженными в программе ТОиР ВС перечнями агрегатов и КИ, эксплуатируемых по ресурсу и по техническому состоянию, а также с установленными в контракте гарантийными обязательствами, в том числе по предельному сроку службы (см. разд. 3).
Все возможные уточнения условий обеспечения долговечности АТ реализуются в виде изменений программы ТОиР, в частности в виде выпуска программы дополнительного контроля конструкции планера (Supplemental Structural Inspection Program - SSIP). Такие уточнения и дополнительные условия характерны, как правило, для стареющих изделий и никак не связаны с ограничением или продлением ресурсов (сроков службы) ВС в целом, что предусмотрено основополагающими нормативными документами (FAR и др.).
Для КИ ситуация за рубежом ближе к отечественной практике, однако величины периодичности КВР ограничиваются на начальном этапе эксплуатации только для особо сложных изделий (например, авиадвигателей) и не всеми фирмами. Большинство фирм поставляет КИ изготовителю ВС или эксплуатанту без ограничения ресурсов и сроков службы в принятом в отечественной практике понимании, но с определенной системой гарантий. Естественно все изделия проходят сертификацию типа "до установки на самолет", то есть отвечают требованиям FAR (JAR) и технических условий (стандартов Technical Standard Order - TSO).
Практически это означает, что после окончания всех гарантий эксплуатант может использовать КИ без ограничений (кроме тех, что есть в сертификате типа), но сам несет все издержки, связанные с повреждениями и отказами КИ.
Практическая интерпретация указанных требований в части долговечности может быть проиллюстрирована на примере двух среднемагистральных самолетов BAe.146 и RJ (Canadair Regional Jet) по материалам .
1. К самолету BAe.146 на этапах создания предъявлялись следующие требования (при продолжительности типового полета 45 минут):
срок эксплуатации "до появления трещин" (crack free life - CFL) - 40000 полетов;
cрок нормальной эксплуатации (с минимальным контролем и восстановлением конструкции - normal operation with minor repair) - 55000 полетов;
cрок эксплуатации до начала контроля конструкции (threshold inspection life - TIL) - 16000 полетов (плюс еще две формы контрольно-восстановительных работ с периодичностью 2 года);
срок нормальной эксплуатации с экономически обоснованным объемом контрольно-восстановительных работ (economic repair life - ERL или economic design goal - EDG) - 80000 полетов.
При этом объем программы "усталостных" испытаний конструкции составлял 140000 полетных циклов.
Интересно отметить также, что в соответствии с практикой британского CAA для самолета BAe.146 было выдвинуто требование к моменту получения сертификата летной годности подтвердить результатами испытаний возможность безопасной эксплуатации в течение 2 лет при 4000 полетов в год и коэффициенте безопасности 5, это требование созвучно отечественой практике установления начального назначенного ресурса, однако оно регламентирует объем "усталостных" испытаний, а не разрешенную продолжительность эксплуатацию парка самолетов.
2. К самолету RJ, уже эксплуатируемому в настоящее время, были предъявлены следующие основные требования в части его долговечности:
CFL - 30000 ч налета (45000 полетов); TIL - 15000 ч налета (последующие проверки совмещаются с формой C и проводятся каждые 3000 ч);
ERL (EDG) - 60000 ч (80000 полетов) или 20 лет.
Таким образом можно резюмировать, что в соответствии с требованиями авиакомпаний и государственными нормами (FAR, JAR) ВС и КИ могут и должны эксплуатироваться по состоянию, а их долговечность обеспечивается методами, отличными от отечественной практики установления и поэтапного продления назначенных ресурсов и сроков службы. Важной составной частью этих методов является использование развернутой системы гарантий поставщика АТ.

2. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА ПОСТАВЩИКОВ И ПОДДЕРЖАНИЕ ДОЛГОВЕЧНОСТИ АВИАТЕХНИКИ ПРИ ЕЕ ЭКСПЛУАТАЦИИ

Формирование указанных гарантий и обеспечение эксплуатации осуществляются за рубежом в соответствии с рекомендациями АТА, изложенными в спецификациях АТА (в частности, АТА Spec. 200, 300 и 400 по вопросам поставок КИ и другим вопросам материально-технического обеспечения) и руководстве АТА для поставщиков АТ .
Указанное руководство рекомендует поставщикам (в интересах успешного сотрудничества с ведущими авиакомпаниями и центрами ТОиР АТ) поддерживать следующие виды гарантий на поставляемую АТ:
 стандартная гарантия,
 гарантия предельного срока службы,
 гарантия уровня надежности КИ,
 гарантия регулярности вылетов,
 гарантия объема ТОиР,
 гарантия затрат на материалы и запчасти,
 послеремонтные гарантии.
Стандартная гарантия соответствует гарантийным обязательствам, принятым в отечественной практике.
Гарантия предельного срока службы и уровня надежности как раз те гарантии, которые обеспечивают необходимый уровень долговечности и надежности поставляемой АТ. Ниже они будут рассмотрены подробнее.
Гарантии регулярности вылетов и затрат на ТОиР не имеет повсеместного распространения и не связаны напрямую с долговечностью и поэтому подробно не рассматриваются.
Гарантия послеремонтной надежности заключается в обязательстве продления первоначальной гарантии после ремонта КИ, т.е. учета ее истечения, начиная с момента восстановления КИ после перерыва в момент его отказа.
Применительно ко всем видам гарантий существует целый ряд общих условий поставки АТ, касающихся и организации поддержания долговечности ВС и КИ в эксплуатации, в частности, ожидается, что поставщики планера и двигателей ВС будут:
 получать сертификаты от субпоставщиков КИ и заключать с ними соглашения о поддержании гарантий, а также сами будут поддерживать обязательства поставщиков КИ в случае невыполнения ими работ по гарантиям на КИ, установленные на ВС или двигателе;
 представлять эксплуатанту общее руководство по всей системе гарантий на ВС и КИ, порядку их выполнения и контроля;
 позволять эксплуатанту самостоятельно устранять за счет поставщиков отказы и повреждения в период действия гарантии, если у него существует для этого аттестованная (сертифицированная) государством материально-техническая база, а технология и оснастка отвечают требованиям поставщика КИ или ВС в целом;
 разделять с эксплуатантом затраты на устранение поломок и повреждений АТ посторонними предметами, если конструкция создана с учетом устойчивости к таким повреждениям;
 проводить гарантийный ремонт КИ в сроки, меньшие сроков плановых форм ТОиР для данного КИ;
 позволять эксплуатантам передачу прав на гарантии третьей стороне в случае аренды, продажи и передачи АТ;
 возмещать затраты на выполняемый силами эксплуатанта гарантийный ремонт (трудозатраты, включая накладные, по согласованным на текущий период тарифам и затраты на материалы и запасные части по текущим ценам).
Стандартная гарантия отвечает всем перечисленным условиям и кроме того содержит ряд дополнительных условий.
1. Изделия не должны иметь отказов и повреждений и отвечать требованиям условий поставки (технических спецификаций) в течение согласованного сторонами периода времени.
2. Гарантированному устранению подлежат отказы КИ, а иногда (по контракту на поставку) и вызванные ими вторичные повреждения.
3. Обязательные доработки (директивы летной годности) подлежат выполнению за счет поставщика АТ и с участием, при необходимости, его специалистов.
4. Период гарантии должен начинаться с начала использования КИ (ВС) и может охватывать весь срок его эксплутации, однако этот период не может быть меньше величины периодичности первого, намеченного по схеме вида планового ТО.
5. При выявлении и устранении в ходе гарантийного ремонта КИ конструктивного дефекта все КИ парка должны быть заменены на доработанные.
6. При отказе КИ, эксплуатируемого по ресурсу, в период гарантии, оно должно заменяться на новое, если отказавшее КИ выработало не менее 50% ресурса, в противном случае отказавшее КИ подлежит восстановлению (ремонту).
Типовые сроки стандартной гарантии составляют от 6 месяцев до 5 лет эксплуатации в зависимости от вида и причины отказа. Для контрактов концерна Airbus Industrie характерна величина стандартной гарантии от 6 месяцев до 4, 5 лет. В тоже время следует отметить высказанное в докладе мнение (по-видимому, общее мнение всех эксплуатантов), что период стандартной гарантии должен быть не менее 5 лет. Такие обязательства берет на себя, в частности, фирма Dassault (например, по самолету Falcon 900B ).
Гарантия предельного срока службы имеет своей целью обеспечить уровень долговечности основных силовых элементов планера и двигателей ВС, удовлетворяющий эксплуатанта. Она устанавливается в единицах наработки и/или календарного срока по согласованию сторон. Обычно для больших ВС величина ее выше и может достигать 60000 полетных циклов и 20 лет эксплуатации. Для легких ВС она существенно меньше, например, для самолета Falcon 900B гарантия предельного срока службы планера - 10 лет или 10000 ч налета .
Смысл этой гарантии заключается в том, что в ее рамках все затраты, связанные с отказами планера (двигателя) в период после окончания стандартной гарантии, возмещаются поставщиком и эксплуатантом солидарно на основе пропорционального разделения (по-видимому, пропорционально отработке гарантийного срока).
Гарантия уровня надежности - это еще одна гарантия, связанная с поддержанием долговечности КИ. Она заключается в обязательствах поставщика обеспечивать своими силами быструю замену отказавших КИ, если:
 эти КИ эксплуатируются по ресурсу;
 на них установлена одновременно с величиной ресурса гарантированная величина наработки на отказ (MTBF) или наработки на неплановый съем с борта (MTBUR) и эта величина не подтверждена в гарантийный период.
Величина гарантийного периода устанавливается обычно не менее 5 лет и он продляется сверх того при необходимости до тех пор, пока за интервал 18 последовательных месяцев не будет подтверждено значение гарантированного уровня надежности. Методика расчета этого уровня обычно включается в соглашение о гарантиях контракта на поставку ВС (КИ).
Таким образом поддержание уровня долговечности АТ в эксплуатации осуществляется за рубежом путем реализации системы гарантий, в частности по уровню надежности КИ и предельному сроку службы планера и двигателей ВС.
За рубежом так же, как в отечественной практике, существует система выполнения дополнительных осмотров и доработок конструкции ВС, однако это характерно для стареющих ВС (в конце срока гарантии предельного срока службы или за его пределами) и имеет целью не "продление ресурса", а сохранение уже заявленного уровня долговечности, либо повышение технико-экономической эффективности эксплуатации. В ряде случаев программы дополнительных осмотров конструкции (Supplemental (Structural) Inspection Program - SSIP (SIP)) являются довольно объемными комплексами работ, однако в пределах гарантии срока службы их выполнение финансируется совместно поставщиком и эксплуатантом ВС. В случае же выявления необходимости доработок из-за недостаточного уровня отказобезопасности конструкции, выявленного в эксплуатации, т.е. реализации директив летной годности, все расходы несет поставщик ВС (двигателя).
В ряде случаев выполнение специальных программ осмотров (типа SSIP) и доработок на базе поставщика обеспечивает увеличение гарантии предельного срока службы. Например, для самолетов фирмы Sabreliner Corporation возможно увеличение гарантии предельного срока службы с 10000 до 15000 ч налета (после выполнения в фирменном центре ТОиР корпорации специальной формы КВР Excalibur Inspection), либо даже до 30000 ч налета при выполнении более трудоемкой формы контроля и доработок конструкции планера .
В заключение можно резюмировать, что в отличие от отечественной практики за рубежом поддержание долговечности АТ в эксплуатации осуществляется не на базе поэтапного продления ресурсов, а путем реализации широкой системы гарантий и поэтапного (с "большим шагом" в 5...15 тыс. ч наработки) уточнения условий (по объемам КВР) отработки расчетных или гарантированных величин EDG. При этом по мере отработки ресурса все время происходит гибкое регулирование затрат эксплуатанта и поставщика на эти работы, осуществляемое на взаимоприемлемой договорной основе и в соответствии с действующими рекомендательными документами, например, ATA .

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Falcon 20 Retrofit. Bendix/King, Allied Signal Inc., 1990.
2. Requirements for Future Advanced Short/Medium Range Aircraft, AEA, 1983.
3. ATA World Airlines and Suppliers Guide, ATA, January 1994.
4. Program Plan - National Aging Aircraft Research Program, FAA/DOT USA, 1989.
5. World Airlines Technical Operations Glossary (WATOG), 10th Edition, ATA, IATA, ICCAIA, 1983.
6. Whittington H. RJ Rolls Out.- Commuter World, June-July, 1991.
7. Grigg R.E. Development of Maintenance Programme Through Flight Test Phase. Proceedings of Aircraft Engineering Conference AIRMECH"81, February 10-12, Zurich, 1981.
8. Meline J. What the Operator Wants. Там же.
9. Olcott J.M. Dassault Falcon 900B.- Business and Commercial Aviation, October, 1991.
10. Sabreliner Maintenance and Repair, Sabreliner Corp., 1991.
11. Edwards T.M., Wilson R.G. Maintenance Program Analysis for Aircraft Structures of the 80"s: MSG-3.- SAE Technical Paper Series, 1980, N 801214.
12. Maintenance Review Board Report. MDD DC-10-10 Maintenance Program, FAA/DOT USA, 1971.
13. Supplement to MDD DC-10-10 MRB Report (Applicable to MDD DC-10-30, -30F, -40), FAA/DOT USA, 1973.
14. Bradbury S.J. MSG-3 as Viewed by the Manufacturer (Was It Effective ?).- SAE Technical Paper Series, 1984, N 841482.

Лекция . ПОКАЗАТЕЛИ НАДЁЖНОСТИ

Важнейшей технической характеристикой качества является надежность. Надежность оценивается вероятностными характеристиками, основанными на статистиче­ской обработке экспериментальных данных.

Основные понятия, термины и их определения, характери­зующие надежность техники и, в частности, изделий машино­строения, даны в ГОСТ 27.002-89.

Надежность - свойство изделия сохранять в установленных пределах времени значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремон­тов, хранения, транспортировки и других действий.

Надежность изделия - это комплексное свойство, которое может вклю­чать: безотказность, долговечность, ремонтопригодность, сохраняемость и т.п.

Безотказность - свойство изделия непрерывно сохранять ра­ботоспособность в течение заданного времени или наработки в определенных условиях эксплуатации.

Работоспособное состояние - состояние изделия, при кото­ром оно способно выполнять заданные функции, сохраняя при этом допустимые значения всех основных параметров, установ­ленных нормативно-технической документацией (НТД) и (или) проектно-конструкторской документацией.

Долговечность - свойство изделия сохранять во времени ра­ботоспособность, с необходимыми перерывами для техничес­кого обслуживания и ремонта, до его предельного состояния, оговоренного технической документацией.

Долговечность обусловлена наступлением таких событий, как повреждение или отказ.

Повреждение - событие, заключающееся в нарушении ис­правности изделия.

Отказ - событие, в результате которого происходит полная или частичная утрата работоспособности изделия.

Исправное состояние - состояние, при котором изделие со­ответствует всем требованиям нормативно-технической и (или) проектно-конструкторской документации.

Неисправное состояние - состояние, при котором изделие не удовлетворяет хотя бы одному из требований нормативно-технической и (или) проектно-конструкторской документации.

Неисправное изделие может быть работоспособным. Напри­мер, снижение плотности электролита в аккумуляторных батаре­ях, повреждение облицовки автомобиля означают неисправное состояние, но такой автомобиль работоспособен. Неработоспо­собное изделие является одновременно и неисправным.

Наработка - продолжительность (измеряемая, например, в часах или циклах) или объем работы изделия (измеряемый, например, в тоннах, километрах, кубометрах и т п. единицах).

Ресурс - суммарная наработка изделия от начала его эксплуатации или ее возобновления после ремонта до перехода в предельное состояние.

Предельное состояние - состояние изделия, при котором его дальнейшая эксплуатация (применение) недопустима по требо­ваниям безопасности или нецелесообразна по экономическим причинам. Предельное состояние наступает в ре­зультате исчерпания ресурса или в аварийной ситуации.

Срок службы - календарная продолжительность эксплуата­ции изделий или ее возобновления после ремонта от начала его применения до наступления предельного состояния

Неработоспособное состояние - состояние изделия, при ко­тором оно не способно нормально выполнять хотя бы одну из заданных функций.

Перевод изделия из неисправного или неработоспособного состояния в исправное или работоспособное происходит в ре­зультате восстановления.

Восстановление - процесс обнаружения и устранения отказа (повреждения) изделия с целью восстановления его работоспо­собности (устранение неисправности).

Основным способом восстановления работоспособности яв­ляется ремонт.

Ремонтопригодность - свойство изделия, заключающееся в его приспособленности к поддержанию и восстановлению ра­ботоспособного состояния путем обнаружения и устранения дефекта и неисправности технической диагностикой, обслужи­ванием и ремонтом.

Сохраняемость - свойство изделий непрерывно сохранять зна­чения установленных показателей его качества в заданных пре­делах в течение длительного хранения и транспортирования

Срок сохраняемости - календарная продолжительность хра­нения и (или) транспортирования изделия в заданных услови­ях, в течение и после которых сохраняются исправность, а так­же значения показателей безотказности, долговечности и ремонтопригодности в пределах, установленных нормативно-тех­нической документацией на данный объект.

Н

Рис. 1. Схема состояний издели

адежность постоянно изменяется в процессе эксплуатации технического изделия и при этом характеризует его состояния. Схема изменения состояний эксплуатируемого изделия приве­дена ниже (рис. 1).

Для количественной характеристики каждого из свойств надеж­ности изделия служат такие единичные показатели, как наработка до отказа и на отказ, наработка между отказами, ресурс, срок служ­бы, срок сохраняемости, время восстановления. Значения этих ве­личин получают по данным испытаний или эксплуатации.

Комплексные показатели надежности, так же как коэффи­циент готовности, коэффициент технического использования и коэффициент оперативной готовности, вычисляются поданным единичных показателей. Номенклатура показателей надежности приведена в табл. 1.

Таблица 1. Примерная номенклатура показателей надежности

Свойство надежности

Наименование показателя

Обозначение

Единичные показатели

Безотказност ь

Вероятность безотказной работы Средняя наработка до отказа

Средняя наработка на отказ

Средняя наработка между отказами Интенсивность отказов

Поток отказов восстанавливаемого изделия

Средняя частота отказов

Вероятность отказов

Долговечность

Средний ресурс

Гамма-процентный ресурс Назначенный ресурс

Установленный ресурс

Средний срок службы

Гамма-процентный срок службы Назначенный срок службы Установленный срок службы

Ремонтопригод­ность

Среднее время восстановления Вероятность восстановления Коэффициент ремонтосложности

Сохраняемость

Средний срок сохраняемости

Гамма-процентный срок сохраняемости

Назначенный срок хранения Установленный срок сохраняемости

Обобщенные показатели

Совокупность свойств

Коэффициент готовности Коэффициент технического использования

Коэффициент оперативной готовности

Показатели, характеризующие безотказность

Вероятность безотказной работы отдельного изделия оцени­вается как:

где Т - время от начала работы до отказа;

t - время, для которого определяется вероятность безотказ­ной работы.

Величина T может быть больше, меньше или равна t . Следо­вательно,

Вероятность безотказной работы - это статистический и от­носительный показатель сохранения работоспособности одно­типных изделий серийного производства, выражающий вероят­ность того, что в пределах заданной наработки отказ изделий не наступает. Для установления значения вероятности безотказной работы серийных изделий используют формулу для среднеста­тистического значения:

где N - число наблюдаемых изделий (или элементов);

N o - число отказавших изделий за время t ;

N р - число работоспособных изделий к концу времени t испытаний или эксплуатации.

Вероятность безотказной работы является одной из наиболее значимых характеристик надежности изделия, так как она охва­тывает все факторы, влияющие на надежность. Для вычисления вероятности безотказной работы используются данные, накап­ливаемые путем наблюдений за работой при эксплуатации или при специальных испытаниях. Чем больше изделий подвергает­ся наблюдениям или испытаниям на надежность, тем точнее определяется вероятность безотказной работы других однотип­ных изделий.

Так как безотказная работа и отказ - взаимно противопо­ложные события, то оценку вероятности отказа (Q (t )) опреде­ляют по формуле:

Расчет среднестатистического времени наработки до отказа (или среднего времени безотказной работы) по результатам на­блюдений определяют по формуле:

где N o - число элементов или изделий, подвергнутых наблюде­ниям или испытаниям;

T i - время безотказной работы i -го элемента (изделия).

Статистическую оценку среднего значения наработки на от­каз вычисляют как отношение суммарной наработки за рас­сматриваемый период испытаний или эксплуатации изделий к суммарному числу отказов этих изделий за тот же период вре­мени:

Статистическую оценку среднего значения наработки между отказами вычисляют как отношение суммарной наработки из­делия между отказами за рассматриваемый период испытаний или эксплуатации к числу отказов этого (их) объекта(ов) за тот же период:

где т - число отказов за время t .

Показатели долговечности

Статистическая оценка среднего ресурса такова:

где Т р i - ресурс i -го объекта;

N - число изделий, поставленных на испытания или в экс­плуатацию.

Гамма-процентный ресурс выражает наработку, в течение которой изделие с заданной вероятностью γ процентов не дос­тигает предельного состояния. Гамма-процентный ресурс явля­ется основным расчетным показателем, например для подшип­ников и других изделий. Существенное достоинство этого показателя в возможности его определения до завершения ис­пытаний всех образцов. В большинстве случаев для различных изделий используют критерий 90%-го ресурса.

Назначенный ресурс - суммарная наработка, при достиже­нии которой применение изделия по назначению должно быть прекращено независимо от его технического состояния.

Под установленным ресурсом понимается технически обосно­ванная или заданная величина ресурса, обеспечиваемая конст­рукцией, технологией и условиями эксплуатации, в пределах которой изделие не должно достигать предельного состояния.

Статистическую оценку среднего срока службы определяют по формуле:

I

где Т сл i - срок службы i -го изделия.

Гамма-процентный срок службы представляет собой календарную продолжительность эксплуатации, в течение которой изделие не достигает предельного состояния с вероятностью , выраженной в процентах. Для его расчета используют соотно­шение

Назначенный срок службы - суммарная календарная продол­жительность эксплуатации, при достижении которой применение изделия по назначению должно быть прекращено независи­мо от его технического состояния.

Под установленным сроком службы понимают технико-экономически обоснованный срок службы, обеспечиваемый кон­струкцией, технологией и эксплуатацией, в пределах которого изделие не должно достигать предельного состояния.

Основной причиной снижения показателей дол­говечности изделия является износ его деталей.

Перед рассмотрением показателей долговечности объектов, необходимо ознакомиться с временными понятиями теории надежности.

Наработка – продолжительность или объем работы объекта. Наработка может быть как непрерывной величиной (продолжительность работы в часах, километраж пробега и т. п.), так и целочисленной величиной (число рабочих циклов, запусков и т.п.).

Наработка до отказа - наработка объекта от начала эксплуатации до возникновения первого отказа. Этот показатель характеризует восстанавливаемую систему.

Ресурс – суммарная наработка объекта от начала его эксплуатации или его возобновления после ремонта до перехода в предельное состояние.

Срок службы – календарная продолжительность эксплуатации от начала эксплуатации объекта или его возобновления после ремонта до перехода в предельное состояние.

Срок сохраняемости – календарная продолжительность хранения и (или) транспортирования объекта, в течение которого сохраняются в заданных пределах значения параметров, характеризующих способность объекта выполнять заданные функции.

Остаточный ресурс – суммарная наработка объекта от момента контроля его технического состояния до перехода в предельное состояние. Аналогично вводятся понятия остаточной наработки до отказа, остаточного срока службы и остаточного срока хранения.

Назначенный ресурс – суммарная наработка, при достижении которой эксплуатация объекта должна быть прекращена независимо от его технического состояния.

Согласно существующей практике оценки надёжности ЭСН потребителей различают следующие по продолжительности перерывы в ЭСН .

Кратковременный перерыв ограничен по продолжительности интервалом времени, необходимым для того, чтобы восстановить ЭСН автоматически с помощью телемеханики или ручным включением там, где оператор может сделать это немедленно. Такие операции обычно не превосходят нескольких минут.

Перерыв средней продолжительности ограничен интервалом времени, необходимым для того, чтобы вручную восстановить электроснабжение в местах, где нет дежурного оператора. Такие операции занимают 1–2 часа.

Длительный перерыв , который не может быть квалифицирован как перерыв кратковременный или средней продолжительности.

В теории надежности используются следующие показатели долговечности.

Средний ресурс – это математическое ожидание ресурса.

Гамма-процентный ресурс – это наработка, в течение которой объект не достигнет предельного состояния с заданной вероятность γ, выраженной в процентах.

Назначенный ресурс

Средний срок службы – математическое ожидание срока службы.

Гамма-процентный срок службы – календарная продолжительность от начала эксплуатации объекта, в течение которой он не достигнет предельного состояния с заданной вероятностью , выраженной в процентах.

Назначенный срок службы – календарная продолжительность эксплуатации объекта, при достижении которой применение по назначению должно быть прекращено.

Основными характеристиками долговечности являются средний срок службы и средний ресурс.

Для восстанавливаемого объекта средний срок службы представляет собой среднюю календарную продолжительность эксплуатации объекта от ее начала или возобновления после предупредительного ремонта до наступления предельного состояния.

Средний ресурс представляет собой среднюю наработку объекта от начала эксплуатации или ее возобновления после предупредительного ремонта до наступления предельного состояния.

Для невосстанавливаемого объекта эти характеристики совпадают и представляют собой среднюю продолжительность работы до отказа или до наступления предельного состояния. Практически эта величина совпадет со средней наработкой до отказа Тср.

Статистическая оценка среднего срока службы может быть получена по результатам наблюдения за n однотипными электросетевыми объектами, эксплуатируемыми приблизительно в одинаковых условиях. Формула для статистической оценки среднего срока службы однотипных объектов по результатам наблюдения имеет вид:

где τj – срок службы j-го объекта;

n – количество однотипных объектов.

Срок службы каждого конкретного объекта наблюдения зависит от многих случайных факторов, при этом предельное состояние объекта практически определяется его характеристиками, свидетельствующими о том, что его дальнейшая эксплуатация становится небезопасной для человека и окружающей среды, или становится экономически невыгодной.